Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 143
1.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  синус левая круг­лая скоб­ка 11 Пи минус альфа пра­вая круг­лая скоб­ка равен:

1)  синус альфа
2)  ко­си­нус альфа
3) −1
4)  минус ко­си­нус альфа
5)  минус синус альфа
2.  
i

Упро­сти­те вы­ра­же­ние 5 ко­си­нус левая круг­лая скоб­ка 7 Пи плюс альфа пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 2 конец дроби минус альфа пра­вая круг­лая скоб­ка .

1) 6 ко­си­нус альфа
2)  минус 6 ко­си­нус альфа
3)  минус 4 ко­си­нус альфа
4) 4 ко­си­нус альфа
5) 6 синус альфа
3.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

1)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби ;

2)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби ;

4)  если  арк­ко­си­нус a= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  альфа = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

6)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

4.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус t пра­вая круг­лая скоб­ка умно­жить на синус левая круг­лая скоб­ка t минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс t пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 5 Пи минус t пра­вая круг­лая скоб­ка конец дроби

1)  минус \ctg t
2) \ctg t
3)  минус тан­генс t
4)  тан­генс t
5) 1
5.  
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния 4 минус 18 синус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби = ко­си­нус дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби на про­ме­жут­ке (−180°; 0°).

6.  
i

Най­ди­те сумму (в гра­ду­сах) наи­мень­ше­го по­ло­жи­тель­но­го и наи­боль­ше­го от­ри­ца­тель­но­го кор­ней урав­не­ния  синус 4x минус ко­рень из 3 ко­си­нус 2x=0.

7.  
i

Най­ди­те (в гра­ду­сах) наи­боль­ший ко­рень урав­не­ния

1 минус синус 17x= левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 19x, зна­ме­на­тель: 2 конец дроби минус синус дробь: чис­ли­тель: 19x, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те

на про­ме­жут­ке [−45°; 180°).
8.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го корня (в гра­ду­сах) на ко­ли­че­ство раз­лич­ных кор­ней урав­не­ния  синус 5x= ко­си­нус 65 гра­ду­сов на про­ме­жут­ке (−90°; 90°).

9.  
i

Най­ди­те (в гра­ду­сах) ко­рень урав­не­ния 4 ко­си­нус левая круг­лая скоб­ка 48 гра­ду­сов минус x пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 42 гра­ду­сов плюс x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та на про­ме­жут­ке (0°; 45°).

10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби
11.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния 4 синус в квад­ра­те x плюс 12 ко­си­нус x минус 9=0.

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
5)  Пи минус арк­ко­си­нус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
12.  
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния  ко­си­нус 8 x умно­жить на ко­си­нус 7 x минус синус 8 x умно­жить на синус 7 x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби на про­ме­жут­ке  левая круг­лая скоб­ка минус 75 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; 0 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

13.  
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния  синус 2x= ко­си­нус в сте­пе­ни 4 дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби минус синус в сте­пе­ни 4 дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби на про­ме­жут­ке [−223°; 333°].

14.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби =1 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 365 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; минус 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка .

15.  
i

Най­ди­те сумму кор­ней урав­не­ния  синус левая круг­лая скоб­ка 5 Пи x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби , при­над­ле­жа­щих про­ме­жут­ку  левая квад­рат­ная скоб­ка минус 1;1 пра­вая квад­рат­ная скоб­ка .

1) 0
2) 0,1
3) 0,4
4) 0,5
5) 2,1
16.  
i

Най­ди­те (в гра­ду­сах) наи­боль­ший от­ри­ца­тель­ный ко­рень урав­не­ния  синус в квад­ра­те левая круг­лая скоб­ка 5x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.

17.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния 32 синус 2x плюс 8 ко­си­нус 4x=23 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус Пи ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .

18.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 18 конец дроби плюс Пи x пра­вая круг­лая скоб­ка = минус 1,5. В ответ за­пи­ши­те уве­ли­чен­ное в 3 раза про­из­ве­де­ние наи­боль­ше­го корня (в ра­ди­а­нах) на ко­ли­че­ство кор­ней этого урав­не­ния на про­ме­жут­ке [3; 9].

19.  
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния 10 синус 5x ко­си­нус 5x плюс 5 синус 10x ко­си­нус 18x=0 на про­ме­жут­ке (110°; 170°).

20.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби =1 на про­ме­жут­ке [−235°; −35°].

21.  
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния  ко­си­нус 5 x умно­жить на ко­си­нус 3 x минус синус 5 x умно­жить на синус 3 x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби на про­ме­жут­ке (−80°; 0°).

22.  
i

Ука­жи­те (в гра­ду­сах) наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  ко­си­нус левая круг­лая скоб­ка 6x минус 72 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1) 5°
2) 102°
3) 17°
4) 42°
5) 7°
23.  
i

Вы­чис­ли­те сумму наи­боль­ше­го от­ри­ца­тель­но­го и наи­мень­ше­го по­ло­жи­тель­но­го кор­ней урав­не­ния  ко­си­нус левая круг­лая скоб­ка 3 Пи x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 3 Пи x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби